A Vertical Application Programming and Development Framework for Spike-Based Neuromorphic Computing Devices

James S. Plank, Catherine D. Schuman (†), Mark Dean, Garrett Rose and John Reynolds
EECS Department, University of Tennessee † Computational Data Analytics, Oak Ridge National Laboratory NICE, 2017

We have developed a software environment for programming applications on spike-based neuromorphic computing systems. The environment is vertical, from applications and programming methodologies at the top, to software support at the middle, to various neuromorphic computing models, simulators and devices at the bottom.

Applications
- Flappy Bird
- Pole Balancer
- Control
- 2D Nav
- Classification
- Microapplications

Common Software Core
- Implementation in C++

Network Module
- Create
- Serialize
- De-serialize
- Mutate
- Reproduce (Crossover)

Device Module
- Instantiate
- Load network
- Pull network
- Apply inputs
- Read outputs
- Run

I/O Module
- Transform inputs
 - numbers, strings
 - pulses, neurons, values
- Transform outputs
 - counts, neurons
 - numbers, decisions

Job Module
- Define job
- Batch multiple jobs
- (Support for GPU)
- (Support for threading)

EO Module
- Define complexity
- Fitness evaluation
- Sliding fitness window
- Reproduction
- Job support

Neuromorphic Models
- NIDA
 - 3D RISC model
 - Analog neurons & synapses
 - Simulator in C++
 - 3D Visualization
 - ASIC Design Completed
- DANNA
 - 2D grid of programmable elements
 - See our demo/poster on DANNA
 - FPGA Implementation
 - Simulator in C++
- MrDANNA
 - Memristive Synapses
 - See our poster on MrDANNA
 - GPU Simulator for batched runs
 - Hardware kit
 - Chip fabrication with SUNY Nanotech
- Others
 - Reservoir Biomimetic
 - Simulator in C++

Programming
- Evolutionary Optimization
 - Applications define fitness
 - Models define operations
 - Evolution of parameters and structure

Exploiting Parallelism
- Kernel Development

Acknowledgements
This work was funded in part by the Air Force Research Laboratory, Information Directorate under award number FA8750-16-1-0065. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright notation thereon.

Visit us @ neuromorphic.eecs.utk.edu